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1. INTRODUCTION

Many areas require a very high-order accurate numerical solution of conservation laws

for complex shapes. This paper deals with the extension to three dimensions of the Spectral

Finite Volume (SV) method for unstructured grids, which was developed to solve such problems

[1-2]. We first summarize the limitations of traditional methods such as finite-difference, and

finite-volume for both structured and unstructured grids. We then describe the basic formulation

of the spectral finite volume method. What distinguishes the SV method from conventional high-

order finite-volume methods [3-5] for unstructured triangular or tetrahedral grids is the data

reconstruction. Instead of using a large stencil of neighboring cells to perform a high-order

reconstruction, the stencil is constructed by partitioning each grid cell, called a spectral volume

(SV), into "structured" sub-cells, called control volumes (CVs). One can show that if all the SV

cells are partitioned into polygonal or polyhedral CV sub-cells in a geometrically similar manner,
the reconstructions for all the SVs become universal, irrespective of their shapes, sizes,

orientations, or locations. It follows that the reconstruction is reduced to a weighted sum of

unknowns involving just a few simple adds and multiplies, and those weights are universal and

can be pre-determined once for all. The method is thus very efficient, accurate, and yet

geometrically flexible. The most critical part of the SV method is the partitioning of the SV into

CVs. In this paper we present the partitioning of a tetrahedral SV into polyhedral CVs with one

free parameter for polynomial reconstructions up to degree of precision five. (Note that the order

of accuracy of the method is one order higher than the reconstruction degree of precision.) The

free parameter will be determined by minimizing the Lebesgue constant of the reconstruction

matrix or similar criteria to obtain optimized partitions. The details of an efficient, parallelizable

code to solve three-dimensional problems for any order of accuracy are then presented.

Important aspects of the data structure are discussed. Comparisons with the Discontinuous



Galerkin(DG) method[7-10] are made. Numerical examples for wave propagation problems are

presented.

2. LIMITATIONS OF TRADITIONAL METHODS

2.1 Finite-difference methods

The most widely used method is the finite-difference method applied to a body-fitted

curvilinear coordinate system. The limitations for very high order of accuracy implementation
are:

a. The spatial differencing is essentially one-dimensional, carried out along coordinate

directions. Thus a large number of data points near the unknown to be updated are

ignored. The large stencil has to be modified near boundaries, where one-sided formulas

are necessary. For implicit methods, in order to maintain a necessary bandwidth, the order

of accuracy must be reduced for points near the boundary.

b. The metric terms are evaluated by numerically differencing the grid point coordinates.

Since numerical grid generators are mostly only second-order accurate, the overall

accuracy of the solution can be severely degi'aded if the grid is not sufficiently smooth.

This is particularly true in highly stretched areas, or near corners or boundaries with very

high curvature.

Co The unknowns are values at grid points. While the differencing can be performed in a

numerically "conservative" manner, the true integral conservation laws can only be

satisfied to second-order accuracy.

d. A single, structured grid is not feasible for very complex shapes. Calculations must be

carried out over a set of patched or overlapping grids. At interface boundaries between

patches, or in the overlap regions, the high accuracy is generally degraded.

2.2 Finite-volume methods for structured grids

Finite-volume methods are often employed to overcome limitations b and c above. The

unknowns are cell averages over quadrilaterals (2D) or hexahedra (3D). A high order

reconstruction in terms of neighboring unknowns is used to obtain values at cell boundaries,

which may be modified by appropriate limiters where necessary. These are used to calculate the

flux, using (approximate) Riemann solvers. In practice, the method is subject to the same
limitations as the finite-difference method.

a. The reconstruction is still done one-dimensionally along coordinate directions.

b° The surface area vectors can be exactly calculated in terms of the cell vertices. But the

flux integral is approximated by a one-point quadrature at the computational face center,

which is equal to the face centroid only to second order. For a non-planar face in 3D, a
face centroid does not even exist.
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C. While the cell volume can be precisely calculated, the unknowns are implicitly assigned

to a computational cell center, which is equal to the cell centroid only to second order.

d. If the grid is very unsmooth, and highly curved, even the second order accuracy is
reduced to first order.

2.3 Finite-volume methods for unstructured grids

The unknowns are cell averages over triangles (2D) or tetrahedra (3D). A reconstruction

of any desired order of accuracy is obtained in terms of unknowns at an appropriate number of

neighboring cells in all directions. The flux integral for each face is evaluated using a quadrature

approximation of the same order of accuracy as the reconstruction. The flux at each quadrature

point is obtained using the reconstructed solution for the two cells sharing that face. In principle,

one can in this manner obtain a numerical solution of any desired order of accuracy. In practice,

this method has severe computational limitations.

a. It is difficult to obtain a non-singular stencil. In general, one is faced with an

overdetermined problem which requires a least square inversion. 'For very high order of

accuracy, the number of cells, and thus the size of the matrix to be inverted, becomes

prohibitively large in three dimensions.

b. Each cell requires a different reconstruction stencil. If the inversion coefficients are

stored, the memory requirements become prohibitive for 3D. On the other hand, repeating

the inversion for every cell at each time step would involve impractically large CPU times.

C° Due to the unstructured nature of the data in physical space, the data from neighboring

cells required for the computation can be far apart in memory. This would hamper the

efficiency of the code due to data gathering and scattering.

3. THE SPECTRAL FINITE VOLUME METHOD

3.1 Basic formulation

The main motivation behind the spectral finite volume method is to find a simple way to

obtain a single non-singular stencil that can be applied to all the cells in an unstructured grid. We

start with a relatively coarse unstructured grid of cells, triangles in 2D and tetrahedra in 3D,

called spectral volumes (SVs). Each SV is then further subdivided into a number of "structured"

sub-cells, called control volumes (CVs), that support a polynomial expansion of a desired degree

of precision. The unknowns are now the cell averages over the CVs. The subdivision has a high

degree of structure, making use of all the symmetries of the simplex geometry. The CVs can be

polygons or polyhedra. For 3D, they can have non-triangular faces, which must be subdivided

into triangular facets in order to perform the required integrations. All the SVs are partitioned in

a geometrically similar manner. We thus obtain a single, universal reconstruction for all SVs.
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Due to the symmetry of the subdivision, only a few distinct coefficients appear in the expansion
in terms of the CV unknowns.

A CV face that lies on an SV boundary will have a discontinuity on its two sides. A

Riemann solver is then necessary to compute the flux on that face. If the flux is a linear function

of the unknowns, the integration can be performed analytically without invoking quadratures [5],

and the result expressed as a weighted sum of all the CV unknowns in the two SVs. The weights

for each type of CV face are universal numbers that are pre-calculated once and read in as input

to the program. If the flux is a non-linear function of the unknowns, a quadrature approximation

of the appropriate degree of precision is required [6]. The conservative variable on one side of a

quadrature point can again be expressed as a weighted sum of the CV unknowns in the SV on

that side. Since the quadrature points belong to just a few symmetry groups, the total number of

distinct weights that need to be stored is relatively small. In order to suppress spurious numerical

oscillations, it may be necessary to modify the reconstructed solution using appropriate limiters
or filters.

The reconstruction within each spectral volume is continuous. Therefore a linear flux

over a CV face that lies in the interior of a SV can be evaluated directly, and the weights for each

type of face can be stored. For a non-linear flux, a similar procedure can be carried out for each

quadrature point. Again a modification involving limiters or filters may 'be required in certain

regions.

3.2 Details of the spectral finite volume method

We present further details of the formulation for a general conservation law. We employ

a vector notation for brevity. A conservation law is written as

_U

--+V.F = O, (1)
Ot

where the conservative variable u can be a scalar or a vector, and the flux F can be a vector or a

tensor. Integrating (1) over each CV, we obtain

udV+ dS.F =0, (2)
dt vj., = _._.,

where Vj._ is the volume of the jth CV in the i th SV, and S,.j._ is the area of planar facet k

bounding Vj.,. (In 2D, each facet is actually a line segment.) The unknowns are the volume

averages of u, defined as

- uaV. (3)
Ujd Vj, i ).i



The partitioning of each SV into CVs depends on the choice of basis functions for the

reconstruction. For a complete polynomial basis, a reconstruction of degree of precision

n requires a subdivision into (at least) N CVs, where

(n + 1) 1D
N= (n+1)(n+2)/2 2D.

(n+l)(n+2)(n+3)/6 3D

(4)

In the present work we partition the SV into N CVs, so that the reconstruction involves the

inversion of a square matrix. We also restrict ourselves to partitions involving only one free

parameter. The choice of parameter for each degree of precision is determined by minimizing the

Lebesgue constant of the reconstruction matrix or similar convergence criteria. We will conduct

numerical experiments to determine an optimum value. Partitions valid for reconstruction up to

degree of precision five for both 2D and 3D have been obtained. If the expansion of u in terms of

the polynomial basis is substituted into (3), and the resulting matrix equation is solved, the result
can be written in the form

u;(r)= _ Lj,,(r)_j,:, (5)
J

where Lj, i (r) are known as shape functions or cardinal basis functions. Details for obtaining the

shape functions L/. i (r) will be given in the final paper.

If F is a linear function of u, the flux integral in (2) for a given facet in the interior of an SV can

be evaluated by substituting expression (5), and the result written as a weighted sum of the CV

unknowns. The surface integrations of the shape functions per unit area are universal, which can

be calculated and stored in advance. Flux integrals for facets on the SV boundaries require a

Riemann solver, and the expansion is now a weighted sum of CV unknowns in both SVs sharing

that facet. For non-linear flux functions, the flux integral is evaluated by a consistent quadrature

approximation of the form

fs,,., aS. F = _ wqn. F(u i (rq))S_,j. i , (6)
q

where the Wq are known quadrature weights. Using (5), we can evaluate u, (rq) as

u, (rq) = _ Lj, i (rq) u_,_. (7)
J

The above equation indicates that the value of u at a quadrature point can also be evaluated as a

weighted sum of the CV unknowns. These weights are the functional values of the shape

functions at the quadrature point, which are also universal, can be calculated and stored in

advance. For facets on the SV boundaries, the flux is replaced by a Riemann flux of the form



n. F(u (rq)) = FRiem (U L (rq), u R (rq), n). (8)

3.3 Data Structure

There are several aspects of the data structure which can lead to a very efficient

parallelizable code. The global grid data consists of face numberings, vertex numberings and

locations, and cell numberings. The topology is specified by listing for each face its vertex

numbers, in an order indicating its orientation, and the two adjacent cell numbers. In order to

make use of the universal nature of the partitioning, all global cells are mapped into a single

standard SV. Thus, each global face can have three possible orientations in the standard SV for

2D, and twelve for 3D. All the information connecting the local CV face numbering for each

possible orientation is pre-determined and read in as input to the program. Detail of this mapping

shall be given in the final paper. We thus can write a single code valid for 2D or 3D, and any

desired order of accuracy.

There is an aspect inherent in the spectral finite volume method that permits an optimum

use of cache memory, resulting in great computational efficiency on modem supercomputers.

Since all unknowns in a single SV cell are packed together, when performing calculations for a

given cell, all the data required from the cell is found contiguous in memory. Since data from at

most two SVs is involved in any single computation, data communication between the CPU and

memory is minimized. All the needed data can be located in cache memory, and may even fit

into L1 cache. This results in great reductions in memory time.

3.4 Comparison with the Discontinuous Galerkin method

The spectral finite volume method bears certain similarities to the Discontinuous

Galerkin method [7-10]. We point out some of the advantages of the SV method. The DG

method solves the conservation law in a weak form, rather than directly as in the SV method.

The unknowns in the DG method are point values, and for time-dependent problems are coupled

together, thus requiring an expensive mass matrix inversion to maintain high accuracy. Due to

the weak formulation, N test functions are needed, resulting in N coupled equations instead of

one. The DG method requires an integration by parts, which results in additional terms to be

evaluated. In the DG method, flux calculations are carried out at quadrature points on the SV

surfaces. In contrast, they are evaluated over CV faces for the SV method, which include

additional faces in the interior of the SV. It appears that the SV method has more faces to

evaluate the flux integrals than the DG method. However, in a (n+l) th order formulation, the

former onl_ involves n th order surface integrations, while the latter requires 2n th order surface

and (2n-l) u' order volume integrations. Finally, the order of accuracy of the DG method is based

on the size of the SV. In contrast, the accuracy in the SV method is based on the size of the much
smaller CV.

4. PARTITIONING OF THE SPECTRAL VOLUME

4.1 Details of the partitioning
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The most critical part of the SFV method is the partitioning of the SV into CVs.

Partitions for the 2D case up to degree 3 have been presented in [2]. Here we present the

partitions for the 3D case. In the present work we restrict ourselves to partitions with one free

parameter. If N, the number of CVs, is not too large, one can invert a matrix with one parameter

analytically, using a symbolic language such as Mathematica. For higher values of N, the

inversion is performed numerically. In the final paper we will present results of convergence

studies to determine optimum values of the free parameters for various degrees of precision.

For partitions with degrees of precision no greater than three, all the CVs have at least

one face on the SV boundary. There are no CVs in the interior of the SV. All the CVs then

consist of the vertices of the 2D CVs for each face of the SV connected to the SV centroid with

straight edges. In Fig. la, we show the partition of an SV into CVs for degree of precision 1.
The four CVs are hexahedra, with all faces being planar quadrilaterals. The partition for degree

of precision 2 is depicted in Fig. 2a. The CVs are here members of two symmetry groups. One
consists of the four hexahedra at the comers of the SV. They are shown in Fig. 2b. Note that the

four quadrilateral interior faces are no longer planar. When required for integration purposes,

they are subdivided into two triangular facets by means of a straight line connecting the SV

comer to the SV centroid. The other group consists of the six mid-edge tetrahedra. They are

shown in Fig. 2c. Note that each tetrahedron consists of two exterior triangular faces and the two

quadrilateral interior faces it shares with the comer CVs. Further details of the partitionings for

degrees of precision up to 5 will be presented in the final paper.

4.2 Shape functions

For a given partition, there exists a unique shape function or cardinal basis function for

each CV, as defined by Eq. (5). These functions are necessary to calculate the weights used in

determining the surface flux integrals. For degree one reconstruction, due to symmetry, there are

only two sets of weights needed to be stored, {-23/52, 5/4, 5152, 5152 } and {29/52, 29/52, -3/52,

-3/52}, corresponding to the boundary CV faces and the interior CV faces, respectively. Since

the shape functions are functions of three variables, they cannot be easily depicted. We choose to

represent them by showing contour plots on the surface of the SV. These are shown in Fig. lb for

(a) SV partition (b) shape function

Fig. 1. SV partition and shape function for polynomial reconstruction of degree one
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arepresentativeCV for thepartitionof degree1.Thecontourplots for thetwo typesof CVsin
the partitionsof degree2, correspondingto Figs. 2b and 2c, are plotted in Figs. 2d and2e,
respectively.Contourplots for higherdegreesof precision,aswell astheanalyticexpressionsfor
theshapefunctionsin termsof localcoordinates,will begivenin thefinal paper.

(a)SVpartition (b) comerCVs (c) mid-edgeCVs

(d) shapefunctionfor comerCV (e)shapefunctionfor mid-edgeCV

Fig. 2. SV partitionandshapefunctionsfor polynomialreconstructionof degreetwo

5. Numerical Results

In order to demonstrate the high accuracy of the method, it was decided in this initial

phase to choose problems for which there exist exact solutions. To this end we solve the

electromagnetic wave equations. We present solutions involving two and three space variables.

Those for two space variables are actually three-dimensional, since they involve electromagnetic

field components in all three directions. We first carry out a convergence study by calculating the

propagation of a wave through a square region at 45 degrees. A non-reflecting boundary

condition is applied at the four boundaries of the square. The coarsest grid consists of 200

triangles, and each successive refinement multiplies the number of triangles by four. Fig. 3a

shows contour plots of E, for the coarsest grid, and Fig. 3b shows the solution after two grid

refinements. A partition of degree of precision of 1, leading to second order accuracy, has been

used. The solutions shown are after the wave has propagated through two periods in time. Note

the excellent solutions at the open boundaries demonstrating the effectiveness of the non-



reflecting boundarycondition. In the final paper we will verify the order of accuracyby
calculatingtheerrorsfor five successivegrid refinements.Similar calculationswill bepresented
for higherordersof accuracy.

In Fig.4,wepresenta three-dimensionalsolution for aplanewavepropagatingthrougha
rectangularparallelepiped,which hasbeendiscretiziedby a tetrahedralgrid. Only the second
orderresultfor thecoarsestgrid is shown.Resultsfor variousordersof accuracyas well asgrid
refinementswill begivenin thefinal paper.

We next presentresultsfor a planewave incident on a perfectly conductingcircular
cylinder.Thegrid usedis shownin Fig. 5.Theaveragedgrid sizeis about1/12of a wavelength.
Figures.6 showcontoursof E. for a TM wave. The exact solution is presented in Fig.6a. The

numerical solution, for second order (linear reconstruction) is shown in Fig. 6b, and for fourth

order (cubic reconstruction) in Fig. 6c. Fig. 7 shows analogous results for H: for a TE wave. In

the final paper we will present results up to sixth order, as well as quantitative comparisons with

the exact solution. We will also show results for a plane wave incident on a sphere.

0.2_5 0.25

-0,5 0 -0,5 0 0.5 1

X x

(a) coarse grid (200 triangles) (b) fine grid (3200 triangles)

Fig. 3. Contour plot of E: for a plane wave propagating through a square region (second order)

Fig. 4. Contour plot of E, for a plane wave propagating through a rectangular parallelepiped
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Fig. 5. Grid for aregionexteriorto acircularcylinder

(a) exact solution (b) second order (c) fourth order

Fig. 6. Contour plot of E z for a TM plane wave incident on a perfectly conducting cylinder

(a) exact solution (b) second order (c) fourth order

Fig. 7. Contour plot of H_ for a TE plane wave incident on a perfectly conducting cylinder
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